About
China Stock Insights is a comprehensive market data service for China A-shares, Hong Kong stocks, and B-shares. It provides real-time and historical price data, financial statements, technical indicators, and news feeds to power investment research and trading strategies. Key features: - Real-time and historical market data for China A-shares, Hong Kong, and B-share markets - Complete financial statements including balance sheets, income statements, and cash flow statements - 30+ technical indicators including SMA, EMA, RSI, MACD, BOLL, and more - Stock-related news and announcement data - Fund flow analysis for the past 100 trading days - Multi-source data aggregation with automatic failover between East Money, Sina Finance, and Xueqiu - Multiple output formats: JSON, CSV, Excel, Markdown, HTML - Built-in caching for improved performance - Support for both local stdio and HTTP network deployment modes
Tools 30
get_hist_data获取指定的股票历史行情数据及技术指标
get_realtime_data获取指定的股票实时行情数据
get_news_data获取股票相关的新闻数据
get_balance_sheet获取公司的资产负债表
get_income_statement获取指定股票代码的公司的利润表
get_cash_flow获取指定股票代码的公司的现金流量表
get_fund_flow获取股票资金流向数据 (近100交易日)
get_inner_trade_data获取公司内部股东交易数据
get_financial_metrics获取公司关键财务指标
get_time_info获取当前时间(ISO格式、时间戳)和最近一个交易日
get_stock_basic_info获取指定股票的基本概要信息
get_macro_data获取宏观经济指标数据,支持多个指标
get_investor_sentiment分析投资者情绪数据,包括用户关注指数、日度市场参与意愿、股票评级记录和机构参与度。
get_shareholder_info获取指定股票的股东情况
get_product_info获取公司主要产品/业务构成
get_profit_forecast获取股票的业绩预测数据,包括预测年报净利润和每股收益
get_stock_fhps_detail获取指定股票的分红配送情况
get_stock_cyq获取指定股票的筹码分布情况
get_stock_research_report获取指定股票的个股研报及盈利预测
get_stock_circulate_stock_holder获取指定股票的流通股东情况
get_stock_management_change获取指定股票的高管持股变动情况
get_stock_restricted_release_queue获取指定股票的个股限售解禁情况
get_stock_value获取指定股票的个股估值分析数据
get_stock_a_code_name获取沪深京 A 股股票代码和股票简称数据
get_stock_volatility通过分钟级历史行情计算指定个股的波动率指标
get_all_cni_indices获取所有指数的代码和基本信息
get_cni_index_hist获取指定指数的日频率历史行情数据
get_cni_index_detail获取指定指数的成分股样本详情
get_stock_technical_rank获取技术选股指标数据,包括创新高、创新低、连续上涨、连续下跌、持续放量、持续缩量、向上突破、向下突破、量价齐升、量价齐跌、险资举牌。
get_stock_board_industry_summary获取所有行业板块实时行情数据
README
china-stock-mcp
[](https://smithery.ai/server/@xinkuang/china-stock-mcp) 一款基于 akshare-one 构建的 MCP (Model Context Protocol) 服务器,为中国股市数据提供接口。提供了一系列工具,用于获取财务信息,包括历史股票数据、实时数据、新闻数据、财务报表等。🚀 核心特性
🛠️ 架构概览
主要组件
server.py: MCP 服务器核心,定义所有工具和数据接口__main__.py: 命令行入口,支持多种运行模式cache_utils.py: 缓存工具,提供内存和磁盘缓存功能支持的数据源
\_fetch\_data\_with\_fallback\ 机制,支持按优先级自动切换数据源。当首选数据源失败或返回空数据时,系统将自动尝试备用数据源,从而提高数据获取的稳定性和可靠性。📋 可用工具
1. 获取股票的历史行情数据,支持多种数据源和技术指标 (get_hist_data)
获取股票历史行情数据。
参数:
symbol (string): 股票代码 (例如: '000001')interval (Literal): 时间周期: minute, hour, day, week, month, year。默认:dayinterval_multiplier (int): 时间周期乘数start_date (string): 开始日期,格式为 YYYY-MM-DDend_date (string): 结束日期,格式为 YYYY-MM-DDadjust (Literal): 复权类型: none, qfq(前复权), hfq(后复权)。默认:noneindicators\_list\ \(string\|list\): 要添加的技术指标,可以是逗号分隔的字符串(例如: 'SMA,EMA')或字符串列表(例如: \['SMA', 'EMA'\])。支持的指标包括: SMA, EMA, RSI, MACD, BOLL, STOCH, ATR, CCI, ADX, WILLR, AD, ADOSC, OBV, MOM, SAR, TSF, APO, AROON, AROONOSC, BOP, CMO, DX, MFI, MINUS\_DI, MINUS\_DM, PLUS\_DI, PLUS\_DM, PPO, ROC, ROCP, ROCR, ROCR100, TRIX, ULTOSC。常用指标:SMA, EMA, RSI, MACD, BOLL, STOCH, OBV, MFI,建议不超过10个。output_format (Literal): 输出数据格式: json, csv, xml, excel, markdown, html。默认:markdown2. 获取股票的实时行情数据,支持多种数据源 (get_realtime_data)
获取实时股票行情数据,支持的数据源包括:eastmoney, eastmoney\_direct, xueqiu。
参数:
symbol (string): 股票代码 (例如: '000001')output_format (Literal): 输出数据格式: json, csv, xml, excel, markdown, html。默认:markdown3. 获取股票相关的新闻数据 (get_news_data)
获取股票相关新闻数据.
参数:
symbol (string): 股票代码 (例如: '000001')output_format (Literal): 输出数据格式: json, csv, xml, excel, markdown, html。默认:markdown4. 获取公司的资产负债表数据 (get_balance_sheet)
获取公司资产负债表数据.
参数:
symbol (string): 股票代码 (例如: '000001')output_format (Literal): 输出数据格式: json, csv, xml, excel, markdown, html。默认:markdown5. 获取指定股票代码的公司的利润表数据 (get_income_statement)
获取公司利润表数据.
参数:
symbol (string): 股票代码 (例如: '000001')output_format (Literal): 输出数据格式: json, csv, xml, excel, markdown, html。默认:markdown6. 获取指定股票代码的公司的现金流量表数据 (get_cash_flow)
获取公司现金流量表数据.
参数:
symbol (string): 股票代码 (例如: '000001')output_format (Literal): 输出数据格式: json, csv, xml, excel, markdown, html。默认:markdown7. 获取股票的近 100 个交易日的资金流向数据 (get_fund_flow)
获取股票的近 100 个交易日的资金流向数据。
参数:
symbol (string): 股票代码 (例如: '000001')output_format (Literal): 输出数据格式: json, csv, xml, excel, markdown, html。默认:markdown8. 获取公司的内部股东交易数据 (get_inner_trade_data)
获取公司内部股东交易数据.
参数:
symbol (string): 股票代码 (例如: '000001')output_format (Literal): 输出数据格式: json, csv, xml, excel, markdown, html。默认:markdown9. 获取三大财务报表的关键财务指标 (get_financial_metrics)
获取三大财务报表的关键财务指标.
参数:
symbol (string): 股票代码 (例如: '000001')output_format (Literal): 输出数据格式: json, csv, xml, excel, markdown, html。默认:markdown10. 获取当前时间(ISO格式、时间戳)和最近一个交易日 (get_time_info)
获取当前时间(ISO格式、时间戳)和最近一个交易日.
参数: 无
11. 获取指定股票的基本概要信息 (get_stock_basic_info)
获取股票基本概要信息,支持 A 股和港股
参数:
symbol (string): 股票代码 (例如: '000001')output_format (Literal): 输出数据格式: json, csv, xml, excel, markdown, html。默认:markdown12. 获取单个宏观经济指标数据 (get_macro_data)
获取单个宏观经济指标数据
参数:
indicator (Literal): 要获取的宏观经济指标。支持的指标包括: money_supply, gdp, cpi, pmi, stock_summary。默认: 'gdp'output_format (Literal): 输出数据格式: json, csv, xml, excel, markdown, html。默认:markdown13. 分析散户和机构投资者的投资情绪 (get_investor_sentiment)
分析散户和机构投资者的投资情绪
参数:
symbol (string): 股票代码 (例如: '000001')output_format (Literal): 输出数据格式: json, csv, xml, excel, markdown, html。默认:markdown14. 获取指定股票的股东情况 (get_shareholder_info)
获取股东情况
参数:
symbol (string): 股票代码 (例如: '000001')output_format (Literal): 输出数据格式: json, csv, xml, excel, markdown, html。默认:markdown15. 获取指定股票公司的主要产品或业务构成 (get_product_info)
获取产品情况
参数:
symbol (string): 股票代码 (例如: '000001')output_format (Literal): 输出数据格式: json, csv, xml, excel, markdown, html。默认:markdown16. 获取股票的业绩预测数据,包括预测年报净利润和每股收益 (get_profit_forecast)
获取股票的业绩预测数据。
参数:
symbol (string): 股票代码 (例如: '600519')output_format (Literal): 输出数据格式: json, csv, xml, excel, markdown, html。默认:markdown17. 获取分红送股详情 (get_stock_fhps_detail)
获取指定股票的分红送股详情数据。
参数:
symbol (string): 股票代码 (例如: '000001')output_format (Literal): 输出数据格式: json, csv, xml, eRelated MCP Servers
AI Research Assistant
hamid-vakilzadeh
AI Research Assistant provides comprehensive access to millions of academic papers through the Semantic Scholar and arXiv databases. This MCP server enables AI coding assistants to perform intelligent literature searches, citation network analysis, and paper content extraction without requiring an API key. Key features include: - Advanced paper search with multi-filter support by year ranges, citation thresholds, field of study, and publication type - Title matching with confidence scoring for finding specific papers - Batch operations supporting up to 500 papers per request - Citation analysis and network exploration for understanding research relationships - Full-text PDF extraction from arXiv and Wiley open-access content (Wiley TDM token required for institutional access) - Rate limits of 100 requests per 5 minutes with options to request higher limits through Semantic Scholar
Linkup
LinkupPlatform
Linkup is a real-time web search and content extraction service that enables AI assistants to search the web and retrieve information from trusted sources. It provides source-backed answers with citations, making it ideal for fact-checking, news gathering, and research tasks. Key features of Linkup: - Real-time web search using natural language queries to find current information, news, and data - Page fetching to extract and read content from any webpage URL - Search depth modes: Standard for direct-answer queries and Deep for complex research across multiple sources - Source-backed results with citations and context from relevant, trustworthy websites - JavaScript rendering support for accessing dynamic content on JavaScript-heavy pages
Math-MCP
EthanHenrickson
Math-MCP is a computation server that enables Large Language Models (LLMs) to perform accurate numerical calculations through the Model Context Protocol. It provides precise mathematical operations via a simple API to overcome LLM limitations in arithmetic and statistical reasoning. Key features of Math-MCP: - Basic arithmetic operations: addition, subtraction, multiplication, division, modulo, and bulk summation - Statistical analysis functions: mean, median, mode, minimum, and maximum calculations - Rounding utilities: floor, ceiling, and nearest integer rounding - Trigonometric functions: sine, cosine, tangent, and their inverses with degrees and radians conversion support